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1. ABSTRACT

inmlcmcntation.  wc have ncrformcd  mine detection functions inAs a preeursor to hardware
simulation on a polarimctric  hypcrspectra~  imaging (PI jI) datasct  cdlleeted by using a tcehniquc  of acousto-
optic tunable filter (AOTF) camera. In principle, PHI data of an image containing objects of interest in a
cluttered background provide significant information about the. objects, including their relative sins, shapes,
orientation, and other characteristics such as light Mlxtanec  and polarization signatures based on their
material properties. The present study was, however, limited only to the direct spectral data for the objeet of
interest.

A fccdforward artificial neural network (ANN) architecture was programmed to recognim
prcdcfincd  spectral “templates” by using a well-known, hardware implcmcntablc  inner-product matching
schcmc. This schcmc  is particularly suited to the problem of spectral discrimination where the spectra to be
examined or the objects to be di.saiminated  are uncorrelated, as in the present case. In this paper, wc
describe the ANN architecture and discuss its hardware implementation issues. In addition, we provide the
results of our simulation study performed along with the suitable preprocessing steps with various window
sizes from 1 xl to 50x50 pixels, leading to the unambiguous dctcztion of the positions of mines in our test
runs without false slam-ts.

2. INTRODUCT1  ON

Pattern recognition is an important class of problems that requires intensive data processing. The
pattcm recognition function is fairly complex, specially when the input is noisy or incomplete. In addition,
there gcncrdly  may not exist a formalism of the algorithmic input-ou(put  relationships. Some of the
examples of such “mapping” application are identification of minerals using multispectral data, target
classification based on infrared (lR), visual, or acoustic data, forensic analysis of fingerprints and signature
matching, etc. Where the categories involved in a given scene arc well correlated, a fccdforward neural
network is capable of “learning” the input-output relationships to perform as a classifier. 1 lowcver, in many
object recognition and classification functionalitics,  one class differs from others with no correlation, and
lcaming  algorithms may not bc suitable or maybe wasteful bccausc  of time required for “lcaming”.  In these
cases, template matching schemes of feedforward neural networks arc more suitable, and when
implemented in parallel hardware, high speed can also be achieved.

Mine detection using side-scan sonar data with cluttered background has been shown to perform
well with a trained fecdforward neural nctwork[ 1 ]. However, mineral identifications from multispectral
data has been shown using templatclpattem  matching algorithm [2]. Pattern matching involves a suitable
comparison of the inner product of the input pattern elements with the respective elements of the stored
patterns or templates, and selection of the best match. This method is analogous to a binary pattern recall
method with minimum Hamming distance as a measure of similarity between an unknown input pattern and
one of several stored patlcrns  [3]. Template matching is particularly suitable when the data is in the form of
spectral rcspon,se and hcncc can be converted as a line vector for ease of matching with stored standard and
prcdctennincd signatures.

Polarimctric hyperspectral  imaging (PHI) is an effective remote sensing technique and uses a
visiblehcar  infrared acousto-optic  tunable filter (AOT}7) protot ypc systcm.  The data gathering is done in a
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range of wavelengths that depends on the detectors used, normally in the visible and/or near infrared
spectrum (0.48 to 0.75 pm) [4]. This technology offers p] omisc of differentiating bctwccn  natural and
man-made objects, and has been shown to offer discrete signature spectra for vegetation, minerals, and
atmosphere depending on their surface texture, ingredients, etc. which arc particularly sensitive to polarized
light. Target detection capabilities arc cnhanccd  because of such perceptive data collection and analysis, and
objects with camouflage or in cluttcrcd  background have a better chance of detection with such hypcrspcctral
data analysis capability

Wc report on a fccdforward  neural network pattern matching algorithm modeled after an associative
content addressable memory which is an analog equivalent of the binary inner product schcmc of Ref. [3].
This .schcmc was tested for detection of mine-like objects (MLO) where multispectral  data across a terrain
using an acousto-optic  tunable filter (AOTF) has been obtained. Two types of objects, one plastic and the
other steel, were used for this classification schcmc  along wit] 1 background sccncry, other manmade objects
and clutter in the sccnc.

Wc briefly dcscribc the neural network pattern matching algorithm and the need to normaliiw  both
the stored and the input pattcms.  A short description of the architecture is given which lends itself to VLSI
implcmcntat.ion if nccdcd for obtaining high speed. Ile problcm of discrimination of MLO using AOTF
data is dcscribcd. This is followed by our cxpcrimcntal  results and discussions.

3 .  PATTERN MATCIIING  ALGORITIIM

The pattern matching algorithm is based on a fccdforward  neural network model with an input layer,
an intcnncdiate  processing layer and an output layer. The input layer stores the prcsclccted  patterns and
after rccciving  an input pattcm, gcncraks  inner products of the input pattern with all the stored patterns (in a
fully parallel fashion, and hcncc at high speed, when implcmc.ntcd  in hardware). The intermediate layer is
designed to perform the functions of finding the best match (in some cases, n best matches, if desired), and
providing label for the selected pattern. It is also feasible to provide an output layer in hardware that
reproduces the winning pattern from storage as the required output pattern.

Let us assume that a set of m patterns Y“’ ,each as a multi-clcmcnt  vector,
.,

YJ=(ylj,  yJyJ. ... y;) . . . . . . . . . . . . . . . . (1)

where j refers to the jth pattern, is stored and each stored pattern is compared with an incoming pattern

x =(X,, X2 , X3,... ,X”) . . . . . . . . . . . . . . . . (2)

Then, a correlation of comparison is given by the rcspcctivc  inner products of (1 ) with (2) as,

cj=~xiyiJ  . . . . . . . . . . . . . . . . . . . ...(3)
1=1

As there arc m stored patterns, there will bc m different values of C to be compared. When the incoming
pattern is closest to onc of the stored patterns, that inner product will be highest in value. Once discerned, a
classifier label of the stored pattern associated with maximum correlation C,,,,, can bc provided. It may be
noted that an exact match is not necessary. By the same token, an incomplete input pattern is equally valid
provided it elicits the response CHm, at the right label. However, one needs to consider the following two
points: one, it is important that the pattcm vectors be of equal lengths; and second, each vector should be
normalixd  (say ,to a common base) so that large- and/or small-valued clcrncn~s  in some of the patterns do
not skew the results [2].
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4. PATTERN NORMAI.IZATION

Wc have investigated two possible procedures of pattern normalization. The first normalizes each
pattern as a whole so that all the patterns arc converted to a common base. The second procedure
normalizes each individual clcmcnt  of the patterns to a common base. These are explained below.

4.1 Normalization Procedure I

Consider a pattcm  vector
.,.

Zj = (Zl’, q’, Z3J, . . . . , q’) . . . . . . . . . . . . $ . . . (4)

We can nonnalim this vector so that the normalized vector

yJ=(a~j9a~i9a~i9....9a~i) . . . . . . . . . . . . . (5)

A perfect match between a stored and an input vector is obtained when their inner product is a maximum.
Thus,

X(Y ‘)‘ 2
i =Cnnx . . . . . . . . . . . . . . . . . . . (6)

icl

Thcrcforc,

~(yf)’=~(a~i)’=cn~x  . . . . . . . . . . . . . . . . (7)
in] i=]

giving the normalization constant for that vector,

i

ca= n!ax
n . . . . . . . . . . . . . . . . . . . . . . (8)

x( )
~J 2

‘1

i=l

The correlation of the jth normalized stored vector az] with an arbitrary normalized input vector bx is,

Cj=~abxi  z{....... . . . . . . . . . . . . (9)
i

z
xi z!

“=C’’”X{*’  “  “

. . . . . . . . . (lo)

When the input pattern vector is identical to onc of the stored pattern, the term in brackets is unity. For a
mismatch, it can be shown that the term in brackets will bc lCSS  than unity and is a measure of goodness of
correlation.

4.2 Normalization Procedure 11

In this proccdurc, for each clcmcnt of a pattcm there is added a complementary clcmcnt.
proccdurc  thus converts an n-clcmcnt  pattern to a 2n-clcmcnt  long pat[cm. Consider a pattcm vector

This
r with
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n clcmcnts,  r], rq, . . , ri, . . , r,. Here, each clcmcnt  ri is associated with a complementary clcmcnt Si such
that (ri)

2 + (si)2 = x; where x is the normalizing constant. Here again it can be shown that for two
normalized patterns (r,s; and z, y), Crt = X(ri z, + si y i) is always lCSS  than CnRX (= n x) unless the two
patterns arc identical, and then Cr. = C~~X.

Normalization proccdurc  I requires computation on the whole pat[crn whereas proccdurc  II deals
with individual clcmcnts  of the pattern at a time. Thcrcforc,  the proccdurc  11 is more amenable to hardware
implcrncntati on. Further, it ensures that even an element with a low wiluc (say, m-o) is given proper
weighting bccausc  its complement is then highest (= x). The disadvantage, of course, is that the pattern
vector is expanded to twice the original size. It is also possible to combine the two procedures if the
problcm at hand warrants that. Wc have adopted proccdurc  11 for nonnali~,ation  of vector clcmcnts during
this test of the AOTF data for classification.

5 .  ARCHITECT~JRE

The algorithm coding for detection of MIX) was done in simulation. However, wc dcscribc  the
equivalent architecture which can bc implcmcntcd  in our analog VLSI hardware [5]. The input layer
consists of a matrix of synapses and each synapse has a set of digitally controlled latches for storage of
weights, Wij, and a multiplying digital to analog convcrtcr  (MDAC) for obtaining the “input-Wij” product
[6]. Each clcmcnt of input pattern is prcscntcd  as a voltage anti is first convcrtcd  as an equivalent current. It
is then multiplied with the stored weights and gcncratcs  the product as a current signal. These currents
along a row for all the clcmcnts of a single vector arc summed along that wire as the inner product of the
input patlcrn clcmcnts  with the clcmcnts  of the stored pattern along that row. Thus, for an n-clcmcnt (i = 1
to n) pattern schcmc, the inner product of the input x with the jth stored vector,

Cj  =
~wjj xi . . . . .

i

. . . . . . . . . . . . . (11)

would bc available along the jth row. The architecture is shown schematically in Figure 1. No learning is
involved because the patterns to be recognized against arc known and accordingly prcstorcd. The second
layer is the winner-take-all which compares the inner products C. along individual rows to dctcn-nine Cn~X
and provide the label of that row. Knowing the row label, the discrimination of the input pattern is thus
obtained [2].

6. AOTF DATA ANI) SETIJP

MLOS arc commonly small-size objects measuring around 30-40 cm. across. They may be metallic
or plastic, and painted with color or in their nascent condition. When they arc placed in outdoor
cnvironrncnt,  light scattering and reflection propcrtiw of the surrounding affwt  their observable spectra duc
to “spectral mixing” [6]. The problem may bccomc even more complex for smaller targets and those that arc
partially occluded by the surroundings.

For our cxpcrimcnt,  the AOTF data was taken with two MIXI types (one metallic and the other
plastic) in full view for obtaining the spectral infom~ation that would be used as the rcfcrcncc patterns.
Figure 2 shows a gray-scale image of the area where the two MLOS were placed. In addition, there were
other objects of different shapes and sizes along with cement structures in a vcgctatcd  environment. Even
though the AOTF data was available with both direct and polarized light signatures, only the dirtxt spectrum
was u.scd for this short duration of the cxpcrimcnt,  with some consequent degradation in the discrimination
results.

The details of the data collection using an AOTF camera arc given clscwhcrc  [6]. The data consisted
of a multi-dimensional intensity spectra set, where each pixel on the terrain had a two-dimensional spectral

4



.
.-

signaturc  of wavelength vs. intensity for the direct and a similar set for the polariind  light. Each spectrum
had 32 wavelengths with corresponding intensities.

In addition to the normalization of the data (giving 64 elements/pattern), an averaging function was
used bccausc  each MLO was much larger than onc pixel and had varying textures and surface reflection
propcxlics  along their surface areas which led to differences in mflcctcd spectrum from pixel to pixel on the
same MLO. The pixel averaging dots tend to 10SC some of the useful feature information available in the
image; however, as a first order, it rcduccs  the eff~ts of variation in illumination and shadows from the
spectral signature assigned to the particular object. A number of cxpcrimcnts  were done to classify the
mines by averaging the spectrum intensities for a (n x n) pixel window around each pixel within the objects,
where n was varied as 1, 3, 5, 10, 20, 25, 30, and 50. Stored patterns rcprcscnting  metallic and plastic
MLOS were thus obtained. In our exercise, except for the two distinct MIX) signatures all other object
spectra were classified as “Other” thus giving a total of the discrimination patterns. A limited runs were
made by considering tree and ground as two additional classes. Each pattern had 64 elements and a total of
at least three different classes.

7. RESULTS AND DISCUSSIONS

With the stored images to compare with, the input  vectors at each pixel were used in the inner
product scheme. The results of the experiments with the different averaging window sizes for the stored
patterns is shown as a set of gray-scale images in Figure 3.

The winner with the largest inner product was obtained by using a wuiablc  threshold value. The
proccdurc resulted in an unambiguous detection of the position of the mines in all the test runs, with
virtually no fake  alarms anywhere in the image. As expected, the position of the MLOS were marked
correctly without being able to mark the exact edges/contours or shapes. This may partly bc duc to the
somewhat arbitrary and unoptimimd selection of win(iow simx.

The discrimination of mines was a very sensitive function of the selection of threshold value. once
a comet value was chosen, the false alarms were avoided. However, there was no way of a priori
determining the exact threshold value. However, in general, the procedure worked to distinguish the MLO
correctly. It was cxpcctcd that additionally usc of pokwi~.cd signatures and combination of both the
normalization procedures I and II would improve the discrimination process further.
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Figures:

Figure 1. A schematic diagram of a pattern matching architecture with inner product scheme and a winncr-
take-all for providing the label of the winning pattern.

Figure 2. A gray scale rendition of the sccnc with two mine-like objects for classification, onc of steel and
the other of plastic. The sccnc also contains vegetation, other man-made objects, etc.

Figure 3. A set of gray scale pictures of the same scene where dark black and white areas arc the location of
MLOS and the remaining areas arc gray and classiticd  as “other”. The classification is provided by using
different pixel data averaging of the stored patterns: a) 1x1; b) 3x3; c) 5x5: d) 10x10; e) 20x20; f) 25x25;
g) 30x30;  and h) 50x50. In some cases tree (near the top of the picture) and ground (near the bottom of the
picture) arc also classified. Stored patterns with 10x 10, to 30x30 pixel averaging seem to classify better
than with other pixel averaging window simx.
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